
2 0 2 4 W I N D R I V E R , A L L R I G H T S R E S E R V E D

Olivier Charrier – Wind River

v1.2

Using Linux in Safety Critical Systems

Agenda

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

1 – Introduction

2 – Linux and DO-178C DAL-D

3 – Linux at DAL-C and above

4 – ELISA

3

Introduction

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

RTCA DO-178C / EUROCAE ED-12C

Failure ConditionDAL
Process

Objectives
Code Coverage

Catastrophic

(may be total loss of life)
Level A 71

Level B + 100% of

Conditions (MCDC)

Hazardous/Severe

(may be some loss of life)
Level B 69

Level C + 100% of

Decisions

Major

(may be serious injuries)
Level C 62 Level D + 100% of Lines

Minor

(may be minor injuries)
Level D 26 100% of Requirements

No Effect

(no impact on passenger or aircraft

safety)

Level E
(5%)

0 None

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

▪ From https://en.wikipedia.org/wiki/Operating_system

“An operating system (OS) is system software that manages computer hardware and software resources and

provides common services for computer programs.”

▪ This is a toolbox, in the end, supporting a Safety Critical System Design with:

‒ Language support (C-Lib, C++-Lib, etc.)

‒ Multi-tasking Scheduling capabilities

‒ Memory Management

‒ Critical Section Management (data protection, semaphores, etc.)

‒ Hardware abstraction layer

‒ Middleware Services (Networking, File System, etc.)

‒ Etc.

▪ There are typically 3 kinds of Operating Systems:
‒ Roll-Your-Own (RYO)

‒ Open Source Software (OSS)

‒ Commercial-Off-The-Shelf (COTS) Operating Systems

Operating System

https://en.wikipedia.org/wiki/Operating_system

6

Linux and DO-178C DAL-D

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Approach-1: All Software at once

▪ Benefits

‒ Minimize the exposure of Linux

‒ No need to shrink Linux to a bare minimum

‒ No need to detail all Linux capabilities in the

Software Architecture

▪ Activities

‒ Create HLDs

‒ Master Integration Process

(even if no source code is really required)

‒ Scrutiny is at Functional Level

(each and every HLR shall be tested)

▪ Assumptions

‒ Take responsibility on the Linux component

Gray Box

Hardware Platform

Linux
Kernel + User Space

Application

A
Application

B

Network

Stack

ext4

Filesystem

Disk / NVMe GPIOEthernet

High Level Requirements

System Level Requirements

Derived HLRs

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Gray Box

1

Approach-2: Split Model
▪ To be implemented when you do not master Linux

or get the Linux component from a board or

silicon vendor

▪ Impact compared to Approach-1

‒ 2x Certification Data Packs

‒ Increase the exposure of Linux in term of

HLRs and Software Architecture

‒ Define a Software/Software integration layer

‒ Assign responsibility of the Linux component

to another stakeholder knowledgeable on Linux

‒ Clarify where is the responsibility of the Hardware

Support (usually driven by System Requirements)

Gray Box

2

Hardware Platform

Linux
Kernel + User Space

Application

AApplication

B

Network

Stack

ext4

Filesystem

Disk / NVMe GPIOEthernet

HLRs

System Level Requirements

Derived HLRs

Linux HLRs

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Gray Box

1

Approach-2: Split Model (cont.)

▪ Result

‒ More work to be done

‒ Create HLRs and Software Architecture out of

Linux Man Pages and Source Code review?

‒ Develop Linux specific HLRs tests

Gray Box

2

Hardware Platform

Linux
Kernel + User Space

Application

AApplication

B

Network

Stack

ext4

Filesystem

Disk / NVMe GPIOEthernet

HLRs

System Level Requirements

Derived HLRs

Linux HLRs

10

Linux at DAL-C and above

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

Switching to a full “White Box” approach

▪ Raising to DAL-C and above means full exposure of the Linux Operating System

‒ Obviously, the level of work and so the price will seriously increase, compared to DAL-D

‒ Less differences between Approach-1 and Approach-2 indicated for DAL-D

▪ Activities

‒ Create HLDs/LLDs for the complete Linux OS

‒ Provide a complete Design Documentation

‒ Master the complete Development Process (source code is really required)

‒ Scrutiny is moved to the level of any line of code (drives a slim profile definition)

‒ Develop additional tests to reach 100% Statement Code Coverage

‒ Etc.

▪ Assumption

‒ Linux Kernel Contributor onboard

‒ Good relationship with the Linux Kernel Community

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

▪ Options are usually driven by the final goal considering the associated budget

‒ Reduce the scope of Linux to reduce the amount work to be done

‒ Leverage the cost on multiple projects

‒ Work at System Level, to mix different operating systems around a hypervisor (or not) for example.

‒ Assumption: Knowledge on the Internals of Linux

▪ Reduce the content of Linux (removal of code, not just “deactivation”)

‒ If reduced too much, it may not be re-usable for other projects, is it then worth the cost?

‒ If not reduced enough, the level of work may not fit into the project budget

▪ Create new tools, processes, and leverage the cost on multiple projects

‒ Define a Core Linux environment that can be used on multiple projects

‒ Contribute with other companies to a bigger piece of work (methods, tooling, artifacts, etc.) that could be re-

used on multiple projects.

▪ An example of resources information and contribution to a bigger piece of work: ELISA

Options?

ELISA Project Overview

Enabling Linux In Safety Applications (ELISA) project aims to

make it easier for companies to build and certify Linux-based

safety-critical applications – systems

ELISA - Where to start?

● Home Page of this Linux Foundation Project: https://elisa.tech/

○ Charter: https://elisa.tech/wp-content/uploads/sites/75/2020/08/elisa_technical_charter_082620.pdf

○ Members: https://elisa.tech/membership/members/

○ Q1 Newsletter: https://email.linuxfoundation.org/elisa-enabling-linux-in-safety-applications-q1-2024-

newsletter

● Events – 2024 Update: https://www.youtube.com/playlist?list=PLuDNrzTpK8zouoi5lP3DbWKWO-dQgcz_f

● Events – Workshops, ELISA Face2Face meetings: https://elisa.tech/workshop-series/

● Events – Seminars, Subject matter presentations: https://elisa.tech/seminar-series/

● Resources – Case Studies: https://elisa.tech/case-studies/

● Resources – White Papers: https://elisa.tech/white-papers/

https://elisa.tech/
https://elisa.tech/wp-content/uploads/sites/75/2020/08/elisa_technical_charter_082620.pdf
https://elisa.tech/membership/members/
https://email.linuxfoundation.org/elisa-enabling-linux-in-safety-applications-q1-2024-newsletter
https://email.linuxfoundation.org/elisa-enabling-linux-in-safety-applications-q1-2024-newsletter
https://www.youtube.com/playlist?list=PLuDNrzTpK8zouoi5lP3DbWKWO-dQgcz_f
https://elisa.tech/workshop-series/
https://elisa.tech/seminar-series/
https://elisa.tech/case-studies/
https://elisa.tech/white-papers/

ELISA Seminar Series

● https://elisa.tech/seminar-series/

● Training & Awareness

● Inside ELISA & outside

● Linux (PREEMPT_RT, page table, …)

● Safety process (SEooC, Automotive, Avionics, ...)

● Tools (BASIL, cregit, RTLA, …)

● Communities (Xen, stress-ng, KernelCI, …)

15Work in Progress - License: CC-BY-4.0

https://elisa.tech/seminar-series/

ELISA Technical Side and Working Groups

● Technical Forum: https://lists.elisa.tech/g/devel

● Community Google Drive: https://drive.google.com/open?id=1Y6Uwqt5VEDEZjpRe0CBCIibdtXPgDwlG

● GitHub: https://github.com/elisa-tech (contains minutes and presentations, etc.)

● Subgroups/Working Groups (WG) : https://lists.elisa.tech/g/main/subgroups

● Vertical Working Groups (provide use cases)

○ Aerospace WG: https://lists.elisa.tech/g/aerospace

■ Use case under definition, in particular a Space Grade Linux

○ Automotive WG: https://lists.elisa.tech/g/automotive

■ Telltale use case

○ Medical-Devices WG: https://lists.elisa.tech/g/medical-devices

■ Open Artificial Pancreas System (OpenAPS) Project use case

https://lists.elisa.tech/g/devel
https://drive.google.com/open?id=1Y6Uwqt5VEDEZjpRe0CBCIibdtXPgDwlG
https://github.com/elisa-tech
https://lists.elisa.tech/g/main/subgroups
https://lists.elisa.tech/g/aerospace
https://lists.elisa.tech/g/automotive
https://lists.elisa.tech/g/medical-devices

ELISA Working Groups (cont.)

● Horizontal Working Groups

○ Linux Features for Safety-Critical Systems (LFSCS) WG: https://lists.elisa.tech/g/linux-features

○ Open-Source Engineering Process (OSEP) WG : https://lists.elisa.tech/g/automotive

○ Safety-Architecture WG: https://lists.elisa.tech/g/safety-architecture

○ Systems WG: https://lists.elisa.tech/g/systems

○ Tool Investigation and Code Improvement WG: https://lists.elisa.tech/g/tool-investigation

https://lists.elisa.tech/g/linux-features
https://lists.elisa.tech/g/automotive
https://lists.elisa.tech/g/safety-architecture
https://lists.elisa.tech/g/systems
https://lists.elisa.tech/g/tool-investigation

ELISA Working Groups

Automotive

(use-case)

Medical

(use-case)

Open Source

Engineering

Process

Safety

Architecture

Tool Investigation

and Code

Improvement

ELISA

Deliverables

Linux Features for

Safety-Critical

Systems

Systems

Aerospace

(use-case)

ELISA Working Groups - Deliverables

● Elements / Software

● Processes

● Tools

● Documentation

STPA

meta-elisa

ks-nav

Codechecker Workload tracing

GitHub / Gdrive / Blog / Whitepaper

RT Linux

Reproducible system

19Work in Progress - License: CC-BY-4.0

https://github.com/elisa-tech/wg-automotive/pull/26
https://github.com/elisa-tech/meta-elisa/pull/28
https://github.com/elisa-tech/ks-nav
https://codechecker.elisa.tech/
https://github.com/elisa-tech/ELISA-White-Papers/blob/master/Processes/Discovering_Linux_kernel_subsystems_used_by_a_workload.md
https://github.com/elisa-tech/wg-automotive/pull/26
https://drive.google.com/drive/folders/1Y6Uwqt5VEDEZjpRe0CBCIibdtXPgDwlG
https://elisa.tech/blog/
https://github.com/elisa-tech/ELISA-White-Papers/blob/master/Processes/Discovering_Linux_kernel_subsystems_used_by_a_workload.md
https://github.com/elisa-tech/wg-systems/tree/main/Documentation/xen-demo-zcu102

2
0

2
4

W

I
N

D

R
I

V
E

R
,

A

L
L

R

I
G

H
T

S

R
E

S
E

R
V

E
D

▪ For DAL-C and above, there is a quite large amount of work to be achieved

▪ Collaborative work and involvement of the Linux community is key here to build an affordable

solution

▪ Automation and Tooling is certainly required to cope with the amount of work

‒ To create mandatory certification artifacts

‒ To help with impact analysis to adopt Linux updates

Interested in Safety with Linux ?

Join ELISA and Contribute!

Conclusion

	TITLE & AGENDA SLIDES
	Slide 1
	Slide 2

	Introduction
	Slide 3
	Slide 4
	Slide 5

	Linux and DO-178C DAL-D
	Slide 6
	Slide 7
	Slide 8
	Slide 9

	Linux and DAL-C and above
	Slide 10
	Slide 11
	Slide 12

	ELISA
	Slide 13: ELISA Project Overview
	Slide 14: ELISA - Where to start?
	Slide 15: ELISA Seminar Series
	Slide 16: ELISA Technical Side and Working Groups
	Slide 17: ELISA Working Groups (cont.)
	Slide 18: ELISA Working Groups
	Slide 19: ELISA Working Groups - Deliverables

	Conclusion
	Slide 20

	End
	Slide 21

