
info@adacore.com adacore.com 1

Rust for Certifiable Software:
Bridging Communities

Jose Ruiz (AdaCore)
HISC, October 22nd 2024

https://www.adacore.com/

info@adacore.com adacore.com

Outline

2

• Why Rust for safety-critical embedded systems

• What is needed for safety-critical certifiable Rust

• Conclusion

https://www.adacore.com/

info@adacore.com adacore.com

About Rust

● Rust is designed for safety
and performance
○ Type-safe and Memory-Safe

○ Supports concurrent and parallel

programming

“fearless concurrency”

○ Provides high performance

no garbage collection

3

● Rust is favored by many
developers (Ranked “most loved
language” for the last seven years on
Stack Overflow)

● Rust syntax is easily understood
by developers with C or C++
knowledge

https://www.adacore.com/
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages

info@adacore.com adacore.com

US White House Office of the National Cyber
Director Report: Back to the Building Blocks

Mentions Rust by name as an example of a
memory-safe language that:
● allows code to be close to the kernel
● supports determinism
● does not have a garbage collector

(Of course, Ada does these as well!)

That Rust is the singularly named memory-safe
language in the report is telling.

Rust is on everybody’s mind!

4

https://www.adacore.com/

info@adacore.com adacore.com

Memory Safety (I)

● Ensure that data accesses are correct

○ Consistent with data type and lifetime

○ Doesn’t go beyond the data value’s boundaries

○ Concurrent accesses are protected

○ …, otherwise, undefined behavior

5

https://www.adacore.com/

info@adacore.com adacore.com

Memory Safety (II)

● Array indexing

○ Run-time check that index is within the bounds of the array (or slice)

● Storage overlaying

○ Rust’s enum type mechanism adds a tag to indicate the type

○ Run-time check for consistency

6

enum E {

 Ptr(Box<i32>),

 Int(i32),

}

let mut e: E;

e = E::Int(100);

match e {
 E::Ptr(p) => println!("{}", *p),
 E::Int(n) => println!("{n}"),

 // other code
}

https://www.adacore.com/

info@adacore.com adacore.com

Memory Safety (III)

● Pointers

○ No garbage collection in Rust

• Ownership and lifetime rules enable a simple automatic reclamation policy

○ Safe pointers

• Check that pointer has a well-defined type

• Compiler ensures no uninitialized or null pointers

• Prevents access to dropped value

• Through conservative compile-time analysis

• No dangling references

• A reference is not allowed to outlive its referent

• Ownership rules

• Allocated values have unique owners

• Transfer ownership through allocation and parameter passing

• Borrow ownership through reference type

7

let refx: &i32;
{

 let x = 100;
 refx = &x; // OK
 println!("{}", *refx); // OK
}
println!("{}", *refx); // Dangling reference

https://www.adacore.com/

info@adacore.com adacore.com

Concurrency (I)

● Potential opportunities for violating memory safety
○ Dangling reference

• Thread’s lifetime exceeds that of a data value that it is accessing

○ Data race / unprotected access

• One thread is writing to a shared data value while another thread is
either reading from or writing to that data

○ Data corruption / aborted update

• Thread terminates while updating a non-local data value

8

https://www.adacore.com/

info@adacore.com adacore.com

Concurrency (II)

● Restrictions on references from threads
○ Local threads cannot reference outer scopes

○ Scoped threads can borrow reference from outer scope

• Cannot outlive them

● Explicit protection with mutexes
○ Mutex is a wrapper

○ Unlocking is automatic

● Channels for producers-consumers

● Atomic types

9

https://www.adacore.com/

info@adacore.com adacore.com

What is needed for certifiable use of Rust?

1. Engineering Considerations
• language and toolchain stability
• toolchain integrity
• target and platform support

2. Support Considerations
• availability of professional training
• long-term maintenance of the toolchain and its

supporting tools
• professional support of the toolchain and its

supporting tools

3. Certification Considerations
• qualification of the compilation toolchain
• certification of the language runtime
• availability of qualified support tools

10

https://www.adacore.com/

info@adacore.com adacore.com

Language and Toolchain Stability

● Yearly release cycle

● Provides a stable foundation for
○ long-term development
○ long-term support
○ qualification

● Six-week release cycle, with
○ new language version
○ new toolchain version

● Moves fast intentionally
○ try out new features
○ keep community energized

Open-Source Rust Safety-Critical Rust

11

https://www.adacore.com/

info@adacore.com adacore.com

Toolchain Integrity

● Provider’s warranty
○ Service Level Agreement (SLA)
○ for all targets, native & cross

● Guaranteed supply-chain security
○ Software Bill of Materials (SBOM)
○ security reporting

● Tier 1: “guaranteed to work”*

○ native only

● Tier 2: “guaranteed to build”
○ some common cross targets

● Security working groups
○ policy and reporting
○ using Rust to write secure

software

Open-Source Rust Safety-Critical Rust

*this is a community commitment; there’s no warranty

12

https://www.adacore.com/

info@adacore.com adacore.com

Target Support

● Common native targets

● Relevant embedded / cross targets
○ bare metal
○ RTOS
○ custom ports as requested

• Restricted runtimes

● Common native targets

● Various embedded / cross targets
○ of broad interest -or-
○ niche, hacker-friendly

Open-Source Rust Safety-Critical Rust

13

https://www.adacore.com/

info@adacore.com adacore.com

Long-Term Maintenance

● Fixes delivered throughout the
year for the current release

● Long-Term Support (LTS) available
○ back-port of fixes to your selected

stable branch

● No commitment to backporting
fixes

● No LTS version of the language

● Follows a Nightly-Beta-Stable
paradigm

Open-Source Rust Safety-Critical Rust

14

https://www.adacore.com/

info@adacore.com adacore.com

Professional Support

● Technical support delivered within
deadlines

● Review customer ITAR materials if
needed (request specific guidance before sending)

● Support by toolchain maintainers
○ offering workarounds -or-
○ bug fixes

● Predictable integration of bug fixes

● Best-effort troubleshooting
○ online forums
○ no guaranteed response time

● Possible fixes to identified bugs
○ in a subsequent release
○ if the interest of community

maintainers aligns with the
problem

Open-Source Rust Safety-Critical Rust

15

https://www.adacore.com/

info@adacore.com adacore.com

Toolchain Qualification

● Three significant pieces
○ cargo: build orchestration

○ rustc: compilation

○ (gcc) ld: linking

● GNAT Pro for Rust will offer a qualkit covering all three of these

● AdaCore has significant experience in toolchain qualification
○ GNAT Pro qualkits for Ada, C and C++ — (including gcc ld)

○ planned & led the certification activities for the first ISO 26262 rustc qual

16

https://www.adacore.com/

info@adacore.com adacore.com

Runtime Certification

● Rust cannot be used without its runtime libraries
○ libcore + liballoc ← much of these are likely required

○ libstd ← significant portions likely to be desired

● GNAT Pro for Rust will offer certified runtime libraries

● AdaCore has extensive experience in runtime certification
○ GNAT Pro certified runtimes for Ada, C and C++

17

https://www.adacore.com/

info@adacore.com adacore.com

Support Tools

● Certifiable use of a language requires qualified support tools
○ code coverage - including to MC/DC

○ static analysis - including for conformance to coding standards

● These tools will be available to support GNAT Pro for Rust

● AdaCore has extensive experience in building and qualifying
support tools
○ gnatcoverage: qualkits available for Ada and C

○ gnatcheck: qualkits available for Ada

18

https://www.adacore.com/

info@adacore.com adacore.com

Source Coverage Analysis

19

Sources

Executable

Traces

Build sources

gnatcov coverage

Coverage report

● Instrument generated object
code to dump execution traces
○ Instrument LLVM IR

● Traces are generated when
running the executable(s)

● Traces are analyzed and coverage
results reported on source code

● Working together with the Rust
community to have it upstream

https://www.adacore.com/

info@adacore.com adacore.com

Conclusions

● Rust is a promising language
○ Safety and security

○ Performance

○ Community

● Safety-critical Rust ecosystem is developing

20

Rust can be considered as a part of
a complete solution for high-performance safety-critical

systems

https://www.adacore.com/

info@adacore.com adacore.com

What’s New in GNAT Pro 25.0

www.adacore.com/hisc-2024

https://www.adacore.com/

