
Formal methods for GPU Software
Development and Verification
using Ada SPARK: Experiences
from Applications in Aerospace

Dr. Leonidas Kosmidis

22/10/2024

Outline

▪ Introduction and motivation

▪ Background

▪ The GPGPU programming architecture

▪ Project Contributions

▪ Kernel code verification

▪ Buffer overflow detection

▪ Conclusions

2

Project Objectives

Objectives

O1

O2

Develop an open source infrastructure in which GPU code (device

code and code communicating with the host CPU interface) annotated

with a specification language (Ada SPARK) for properties like pre-

conditions, post-conditions, loop-invariants etc. can be used with an

automatic proof system to prove the correctness of the code and the

absence of runtime errors.

3

Project Objectives

Objectives

O1

O2

Identify limitations of formal methods for GPU code, so that can be

addressed by tool vendors and/or the potential GPU users understand

what these tools can and cannot do.

4

Safety Critical Systems

▪ Used in automotive, avionics and aerospace industries

▪ Correct execution is of paramount importance

▪ Any malfunction may be dangerous

▪ Designed to comply with functional safety standards:

▪ Automotive: ISO 26262, Avionics: DO-178C, Aerospace: ECSS

▪ Traditionally rely on very old and simple single core processors

▪ Cannot provide the performance required for new advanced functionalities

5

Need for Higher Performance in Aerospace Systems

▪ Airbus: Automatic Taxi, Take-Off and Landing (ATTOL)

▪ ESA: Φ-Sat-1, OPSAT - AI and automatic cloud screening

6

Need for Higher Performance in Safety Critical Systems

• Legacy hardware used for safety critical systems cannot

provide the required performance

• Embedded Graphics Processing Units (GPUs) are:

• Designed to comply with safety critical functional

safety standards e.g. ISO 26262

• Very attractive candidate platforms for safety critical systems

• GPU4S (GPU for Space) project funded by the European Space

Agency at BSC has shown very promising performance results on

space relevant processing

7

Need for Safe Programming Models

• The adoption GPU platforms in safety critical systems require not only

high performance but also ease of programmability and high assurance

• According to ISO 26262, Automotive functionalities are assigned a criticality level

• Automotive Safety Integrity Level (ASIL)

• Highest Criticality software (ASIL-D) needs to comply with certain rules:

• Restricted use of Pointers

• No dynamic memory allocation

• Static verification of program properties

• Expensive testing methods like MC/DC (Modified Condition/Decision Coverage)

• Similar requirements found in other safety standards

8

Need for Safe Programming Models

• The adoption GPU platforms in safety critical systems require not only

high performance but also ease of programmability and high assurance

• According to ISO 26262, Automotive functionalities are assigned a criticality level

• Automotive Safety Integrity Level (ASIL)

• Highest Criticality software (ASIL-D) needs to comply with certain rules:

• Restricted use of Pointers

• No dynamic memory allocation

• Static verification of program properties

• Expensive testing methods like MC/DC (Modified Condition/Decision Coverage)

• Similar requirements found in other safety standards

[1] Trompouki and Kosmidis, Brook Auto: High-Level Certification-Friendly Programming for GPU-powered Automotive Systems, DAC 2018 9

Ada

• High level programming language

• Appropriate for low-level programming like C

• Similar performance but safer

• Strong typing, bound checks in arrays

• Even programming in Ada protects against common C programming mistakes

• Widely used in safety critical systems, especially in the aerospace domain as

well as for security

• SPARK is a safe subset of Ada

• Can be used with Formal methods Tools

• Prove the absence of runtime errors

• It can formally verify program specifications

10

Ada SPARK - Adoption Levels

Cost

Effort

Assurance

Stone

Platinum

Bronze

Silver

Gold

▪ The code uses only the SPARK executable subset

▪ Data and flow analysis

▪ Prevents null dereferences, ensures proper data flow

▪ Guarantees absence of runtime errors (including buffer

and numerical overflow, division-by-zero)

▪ Proves key integrity properties (e.g. pre/post-conditions)

▪ Full functional proofs of the requirements

11

Ada SPARK - CUDA backend

• On-going collaboration between NVIDIA and AdaCore

• NVIDIA has adopted SPARK for the development of the

secure hypervisor (CPU) for their Embedded GPU platforms

• On-going development of an experimental compiler backend

• Allows to use Ada instead of CUDA C for programming both

the host and the GPU code

• Currently under closed beta

• AdaCore donated a license and support for any issues

we discovered

• Current version of the tools do not support all language features yet

(e.g. shared memory, thread synchronisation)

• The AdaCore CUDA backend is not yet integrated with SPARK tools

• Figuring out how to use it was part of the project contributions

12

The GPGPU Programming Architecture

• Massively Parallel Accelerators

• Single instruction - multiple threads

programming model

• Threads organised in up-to 3D groups

• Unique thread identifiers

• Different address space

• Memory Transfers to/from host CPU

• Explicit memory allocation and transfers

• Raw pointers

CPU / Host code

Programming API

GPU / Device code

GPU Programming Language

Image credit Wen-mei W. Hwu (UIUC) and David Kirk (NVIDIA)

13

Example: Vector Addition Kernel in CUDA

14

(Device Code)

Example: Vector Addition Kernel Launch in CUDA

The ceiling expression makes

sure that there

are enough threads to cover

all elements.

15

(Host Code)

CUDA Kernel Execution in a Nutshell

Grid
Blk 0 Blk N-1

• • •

GPU
M0

RAM

Mk• • •

16

Kernel Code Verification

Guarantees from the Typing System

Using only the default Integer type:

18

Arithmetic Overflows and Underflows

SPARK verification over the silver level

guarantees us freedom of runtime errors:

Prover output:

19

Division-by-Zero

Divisions are common in kernel computations.

The possibility of dividing by zero is usually left unchecked.

SPARK's control flow analysis is able

to guarantee absence of the error:

20

Functional Correctness Guarantees

▪ Preconditions/Postconditions

▪ Loop Invariants

▪ Assertions

Assertions can be evaluated at runtime,

but in SPARK code they are also

used by the prover.

A typo in the Max function,

like A<B instead of A>B, results in this:

21

Fixed-Point Arithmetic

▪ Floating point numbers are a source of

inaccuracies.

▪ Accumulated errors can result in silent

bugs.

▪ Fixed point types are predictable.

▪ The prover treats them as scalar

integers.

No warnings are reported

from the prover on this example:

22

Buffer Overflow Detection

23

Detecting Buffer Overflow Errors

24

▪ Buffer overflow errors are very common in GPU programming.

▪ They can result in (possibly silent) bugs.

▪ Possible bugs include:

▪ Dimensions we give at the kernel invocation

▪ Indexing inside the kernel

▪ Memory transfers

▪ We need a way to detect such errors.

A Programming Pattern for Buffer Overflow Detection

Step 01

Construct a wrapper for the CUDA

kernel invocation and the data

transfers before and after it.

25

Step 02

Add preconditions in the wrapper's

specification that dictate invariants

among the vectors' ranges and the

given block and grid dimensions.

The prover analyses the host and GPU code in isolation.

There must be consistency between the CPU and GPU code.

A Programming Pattern for Buffer Overflow Detection

26

Step 03

Reflect the wrapper's preconditions

with Ada-SPARK assumptions in the

declaration part of the kernel's body.

A Programming Pattern for Buffer Overflow Detection

If we forget to check whether the index is within the

array boundaries, we’ll get an error like this:

27

GPU4S Benchmark Suite Port (Use cases)

Seven benchmarks have been ported first to Ada for CPU and then GPU:

• matrix_multiplication_bench (int + float version)
• convolution_2D_bench (int + float version)
• fir_filtering (int + float version)
• max_pooling_bench (int + float version)
• relu_bench (int + float version)
• softmax_bench (int + float version)
• correlation_2D (float only version)
• LRN_bench (float only version)

Even without any specific SPARK verification attempts, the benchmarks reach stone level verification.

For all of them, we reached silver adoption level.

For several of them, we also reached gold adoption level.
28

Open Source - Used by the European Space Agency

GPU4S Bench Identified Issues

29

The SPARK GPU version of the code does not contain these defects, thanks to the

safe design of Ada and the formal verification capabilities of SPARK.

size_B = n + kernel_size-1

Buffer Overflow

Incomplete Array

Initialisation

(use of uninitialised

variables)

Conclusions and Contributions

30

▪ We found a way to run the Ada-SPARK prover on Ada code for GPUs

▪ We developed examples showcasing that is possible to run SPARK tools on kernel code

▪ We constructed a pattern for buffer overflow detection across host and device code

▪ We ported GPU4S benchmark suite to Ada for GPUs

▪ applying our developed methodologies

▪ achieving at minimum silver adoption level

▪ demonstrated that errors found in C/CUDA version do not exist in the Ada SPARK

version

▪ All our developments are released as open source [1][2]

▪ For more details check our DATE 2024 and Ada Europe 2024 publications [3][4]

[1] Ada SPARK GPU Examples, https://gitlab.bsc.es/dimitris_aspetakis/ada-spark-gpu

[2] GPU4S Ada SPARK port, https://gitlab.bsc.es/dimitris_aspetakis/gpu4s-bench-ada

[3] Formal Methods for High Integrity GPU Software Development and Verification, DATE 2024

[4] Using AdaCore's GNAT for CUDA for Safety Critical GPU Code Development and Verification, AEiC 2024

https://gitlab.bsc.es/dimitris_aspetakis/ada-spark-gpu
https://gitlab.bsc.es/dimitris_aspetakis/gpu4s-bench-ada

Acknowledgements

31

This work was supported by:

▪ The European Space Agency (ESA) through the Formal

Methods for GPU Software Development and Verification

project (ESA STAR AO 2-1856/22/NL/GLC/ov).

▪ The European Commission through the METASAT Horizon

Europe Project under grant agreement number 101069595.

▪ AdaCore through a license and support for all related tools

used in this work.

▪ The Spanish Ministry of Science and Innovation under the

grant IJC2020-045931-I.

Thank you!

	Slide 1: Formal methods for GPU Software Development and Verification using Ada SPARK: Experiences from Applications in Aerospace
	Slide 2: Outline
	Slide 3: Project Objectives
	Slide 4: Project Objectives
	Slide 5: Safety Critical Systems
	Slide 6: Need for Higher Performance in Aerospace Systems
	Slide 7: Need for Higher Performance in Safety Critical Systems
	Slide 8: Need for Safe Programming Models
	Slide 9: Need for Safe Programming Models
	Slide 10: Ada
	Slide 11: Ada SPARK - Adoption Levels
	Slide 12: Ada SPARK - CUDA backend
	Slide 13: The GPGPU Programming Architecture
	Slide 14: Example: Vector Addition Kernel in CUDA
	Slide 15: Example: Vector Addition Kernel Launch in CUDA
	Slide 16: CUDA Kernel Execution in a Nutshell
	Slide 17: Kernel Code Verification
	Slide 18: Guarantees from the Typing System
	Slide 19: Arithmetic Overflows and Underflows
	Slide 20: Division-by-Zero
	Slide 21: Functional Correctness Guarantees
	Slide 22: Fixed-Point Arithmetic
	Slide 23: Buffer Overflow Detection
	Slide 24: Detecting Buffer Overflow Errors
	Slide 25: A Programming Pattern for Buffer Overflow Detection
	Slide 26: A Programming Pattern for Buffer Overflow Detection
	Slide 27: A Programming Pattern for Buffer Overflow Detection
	Slide 28: GPU4S Benchmark Suite Port (Use cases)
	Slide 29: GPU4S Bench Identified Issues
	Slide 30: Conclusions and Contributions
	Slide 31: Acknowledgements
	Slide 32: Thank you!

