
This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

ADDING ROBUSTNESS TO C++
JOHN PRICE, MBDA, TECHNICAL EXPERT SOFTWARE
DESIGN AND IMPLEMENTATION

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

Reference 1

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

• Introduction 3

• Basic Principals 10

• Subtypes 16

• Composite types 20

• Representation 25

• Attributes 28

• Lifetime checks 31

• Compile time check example 36

• Runtime check example 41

• Performance 44

• Call for contribution 47

Reference 2

Table of contents

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Introduction

Reference 3

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 4

Background
Introduction

• MBDA heavy Ada user however…
• Ada has small market share
• Socio-economic pressures
• Company policy now rejects the use of Ada for new projects
• Looking at Rust but…

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 5

Language Position Rating

C++ 2 10.75%

C 4 8.89%

Rust 14 1.32%

Ada 26 0.71%

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 6

Desired Language features
Introduction

• Strong ranged types
• Integers
• Floats
• Enums
• Fixed point types
• Modulo types

• Non zero based or enum based Array indexing

• Ability to represent any arbitrary data structure

• Variant records

• Compile and runtime checks

• Software exceptions with output of stack trace

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 7

The Challenge
Introduction

• Can we represent these features in C++?

• Can we force enough code to run at compile time to conduct the compile time checks?

• Will the user applications written using the library run at an acceptable speed?

• Dynamic memory allocation

• Macros

• Obscure error messages

• Syntactic gymnastics

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

Things we wanted to avoid

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 8

Existing libraries
Introduction

• Boost “safe” library defines templates for use with basic types
• provides overflow checks etc.
• does not allow further range restriction

• Other libraries exist for ranged types
• these provide a useful reference
• do not provide a comprehensive set of features

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 9

Compiler Issues
Introduction

• Having used gcc and Visual Studio, what C++ will compile seems to be very compiler
dependent….

• The Strong library relies on C++17 template features. However,
• GCC compiler bug 85282 prevents template specialization inside other

templates
• Had to move from template specialization to constexpr if. However Visual Studio

not great with constexpr if...

• Looking to move to C++ 20 to take advantage of “concepts”
• This allows the compiler to check the validity of the template parameters

• C++ 23 may introduce “reflection” allowing built in enum to string
conversions

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Basic Principals

Reference 10

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 11

Range Definition
Basic Principals

• A simple ranged type definition might be
using distance_type = strong::type<uint8_t,1,7>;

using velocity_type = strong::type<uint8_t,1,7>;

• However, C++ cannot pass float values as a template parameter
• We need to differentiate between types with the same min/ max values

• Defining a range template provides the key.
constexpr strong::range<uint8_t> distance_range (1,7);

using distance_type = strong::type<distance_range>;

constexpr strong::range<uint8_t> velocity_range (1,7);

using velocity_type = strong::type<velocity_range>;

• Assigning an attribute of velocity_type to distance_type will cause a compilation error
• If an attribute of velocity_type is set to 8 the software is directed to a last chance handler. This

is can be overridden but the default behaviour is to generate a stack trace and terminate the
software.

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 14

Declaration in headers
Basic Principals

• The declarations used so far work fine in an implementation file

• However, in a header used by say 3 implementation files this would result in 3 incompatible
types. Each would have a different instance of the range variable.

• Range needs “static linkage”
struct def_radian_type {

static constexpr strong::range<double> radian_type_range(-3.14,3.14);

}

using radian_type = strong::type<def_radian_type::radian_type_range>;

• This is starting to get too much for general use

• So we have a macro.
STRONG_TYPE(radian_type, double, -3.14,3.14);

• And for enums
STRONG_ENUM(fish_type, cod, haddock, plaice, sole);

• This enables us to include enum to string conversion functions.
• Until we get “reflection” in C++23

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 15

Other Types
Basic Principals

• Fixed point types are provided, in the range definition the parameters are treated as doubles.
The LSB is provided as the final parameter.

STRONG_FIXED_TYPE(location_type,int8_t,-30,30,0.5);

location_type location = 20.5;

• Modular types are provided
STRONG_MODULO_TYPE(modulo_8_type,int8_t,0,7);

modulo_8_type modulo_8 = 4;

modulo_8 = modulo_8 + 5; // molulo_8 = 1

• In order to conduct fixed point maths without using floating point operations the strong library
uses a class called universal_fixed. This represents fractional numbers using a bool for sign and
uint64_t for integral, numerator and denominator.

strong::universal_fixed foo = 1.5; // true, 1,1,2

strong::universal_fixed baa = -0.2; // false,0,1,5

strong::universal_fixed result = foo*baa; // false,0,3,10

double result2 = result.get_value(); // -0.3

• Limited types are supported
STRONG_LIMITED(limited_degree_type,uint16_t,0,360);

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Subtypes

Reference 16

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 18

Subtype hierarchy
Subtypes

• Subtypes are compatible types with a constrained range
STRONG_TYPE(degree_type,float,-180f,180f);

STRONG_TYPE(semi_circle_type,degree_type,0f,180f);

• Variables of degree_type and semi_circle_type may be mixed in mathematical expressions
without explicit conversion

• Subtypes can be used to create an arbitrary tree of sub-types

• In the strong library each child is considered to be of the same type as its parent but not its
siblings. Therefore C_A can be assigned to A but B_B can only be assigned to B_A via type
A_B.

A

C_AB_BB_A

A_CA_BA_A

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 19

Fixed Point Subtypes
Subtypes

• Fixed subtypes may be generated using the strong type macro
STRONG_FIXED_TYPE(fixed_radian_type,int32_t,-3.14f,3.14f,0.01f);

STRONG_TYPE(fixed_semi_type,fixed_radian_type,0.0f,3.14f);

• For explicit type conversion the following syntax is provided. The underlying types must be
convertible according to C++ rules

STRONG_TYPE(radian_type,float,-3.14f,3.14f);

STRONG_TYPE(degree_type,float,-180f,180f);

radian_type radians = 2.0;

degree_type degrees = radian_type::cast_to<degree_type>(radians)/3.14*180;

Type conversion

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Composite types

Reference 20

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 21

Arrays
Composite Types

• Strong types can be used to define array bounds
STRONG_ENUM(fish_type, cod, haddock, plaice, sole);

• As per C++ STL convention the stored type is defined first and the index type second

• The stored type can be a standard C++ type, or a strong::type, strong::array, strong::tuple etc.

• The index must be a strong::type, the underlying type can be an enumeration or integral but
not a floating point type

STRONG_TYPE(velocity_type,float,0f,120000f);

using fish_speed_array_type = strong::array<velocity_type, fish_type>;

• The array instance can be accessed using the enumeration
fish_speed_array_type fish_speeds{2.3, 4.5, 1.7, 200.3};

velocity_type velocity = fish_speeds[fish_type_enum::haddock]; //4.5

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 22

Multidimensional Arrays
Composite Types

• The multiple ranges can be assigned to a single array. Under the bonnet this creates nested
arrays of arrays

STRONG_ENUM(ocean_type, atlantic, pacific, indian, arctic);

using ocean_fs_array_type = strong::array<velocity_type,ocean_type,fish_type>;

fish_speed_array_type atlantic_speeds{2.3,6.5,1.7,200.3};

fish_speed_array_type pacific_speeds {4.4,4.5,1.5,20.3};

fish_speed_array_type indian_speeds {6.1,2.5,1.2,2.3};

fish_speed_array_type artic_speeds {1.3,0.5,7.8,0.3};

ocean_fs_array_type

ofs{atlantic_speeds,pacific_speeds,indian_speeds,artic_speeds};

velocity_type velocity = ofs[ocean_type_enum::indian][fish_type_enum::haddock];

//2.5

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 23

Unconstrained Arrays
Composite Types

• The definition of the index type may be deferred
template <typename index>

using velocity_array_type = strong::array<velocity_Type,index>;

• However the index still needs to be defined at compile time

• The Strong runtime_array wraps std::vector

• std::vector uses dynamically allocated memory on the heap

• The wrapper limits the functionality so that heap space is only allocated on construction. The
memory is freed at the end of the variable’s lifetime.

using runtime_array_type = strong::runtime_array<velocity_type, fish_type>;

void example_func(fish_type first, fish_type last)

{

strong::range<fish_type> array_range(first, last);

runtime_array_type my_array(array_range);

}

Runtime Arrays

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 24

Variants
Composite Types

• The strong variant wraps the std::variant to allow indexing by enum;
• To simplify the definition of a strong variant a macro is provided

STRONG_VARIANT(Var_type,4,

START,0,STOP,0,BIT,1,DEMAND,2,

uint8_t, bool, double};

Var_type a,c;

Var_type b(Var_type_kind_enum::BIT, true);

c.set<Var_type_kind_enum::DEMAND>(3.1);

a=b;

std::cout << a.get<Var_type_kind_enum::BIT>() << std::endl; //TRUE

a=c;

std::cout << a.get<Var_type_kind_enum::DEMAND>() << std::endl; //3.1

• The macro parameters are as follows;
• Type name
• Number of variants
• Pairs of variant name and associated type position
• List of associated types.

• The macro creates a strong enumerated type <Type name>_kind that uses an enum class
called <Type name>_kind_enum.

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Representation

Reference 25

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 26

Enums revisited
Representation

STRONG_ENUM(fish_type, cod, haddock, plaice, sole);

• To use Strong types with representation clauses there are also a macro variants to define the
number of bits

STRONG_ENUM_SIZE(fish_type, 2, cod, haddock, plaice, sole);

• The above uses the default range of 0 to 3 to represent the enums. So they fit in the 2 bits
defined. This is checked at compile time.

• It may be we need the enums to be represented by different values
STRONG_ENUM_REP(fish_type, 8, cod, 0b01010101,

haddock, 0b01010111,

plaice, 0b01011101,

sole, 0b01110101);

• In the macro the underlying enum class is left with the default range. The representation
values live along side for serialisation and deserialization functions.

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 27

Tuple
Representation

• The strong variant wraps the std:tuple to allow indexing by enum;

• It also allows the specification of byte offsets and start/stop bits along with endianness
STRONG_TYPE_SIZE(nibble_type, 4, uint8_t,0,15)

STRONG_TYPE_SIZE(byte_type, 8, uint8_t,0,255)

STRONG_TUPLE (message_type, LITTLE,

header, nibble_type, 0, 0, 3,

body, byte_type, 0, 4, 11,

footer, nibble_type, 1, 4, 7);

message_type message(0xE, 0xFD, 0xA);

uint8_t raw_msg[stong::numbytes(message_type::size())];

strong:: raw_c_ptr_container<uint8_t> raw_msg_wrp (raw_msg, 2);

Message.get_byte_array(raw_msg_wrp);

std::cout << std::hex << raw_msg_wrp[0] << std ::endl; // FE

std::cout << std::hex << raw_msg_wrp[1] << std ::endl; // AD

• Serialization (get_byte_array), de-serialization (set_from_byte_array) and validation functions
are provided

• Functions to output the message description to a text file are also provided

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Attributes

Reference 28

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 29

Type attributes
Attributes

• The following constexpr functions are available for strong types
• first, last
• range
• length
• pos, val (discrete types only, Use with floating point types will raise an error at compile time.)
• enum_rep, enum_val (as above but uses the representation values)
• prev, succ (discrete types only, Use with floating point types will raise an error at compile time.)
• size (in bits when used with tuple serialisation)

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Lifetime checks

Reference 31

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 32

Access types
Lifetime checks

• The Strong Access provides a wrapper for the standard C pointer
using fish_acc_t = strong::access<fish_type>;

fish_type fish = fish_type_enum::plaice;

fish_type_acc_t fish_acc = &fish;

*fish_acc = fish_type_enum::haddock;

• Fish_acc can be used in the same way as a standard pointer. However, if it is used whilst null
the last chance handler will be called.

• The Strong Reference provides a wrapper for the standard C++ reference
using fish_ref_t = strong::reference<fish_type>;

fish_type fish = fish_type_enum::plaice;

fish_type_ref_t fish_ref = fish;

*fish_ref = fish_type_enum::haddock;

• Note: unlike standard C++ references the strong reference requires de-referencing before use.

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 33

Lifetime checks
Lifetime checks

• The class strong::lifetime_check enables the lifetime track functionality.

• Any class that inherits this class will have its lifetime checked.

• Strong::lifetime_check can be inherited by user defined classes. It is inherited by the following
‘strong’ composite types.
• strong::runtime_array
• strong::tuple
• strong::variant

• The Feature involves checks conducted in the destructor of types that inherit from
strong::lifetime_check. This prevents objects of these types from being considered literal types
and among other things declared constexpr. Therefore it is not applied to the basic “strong”
library types.

• If on destruction pointers or references to the object remain the last chance handler is called.

• The lifetime check feature currently uses dynamic memory allocation to track the existence of
strong::access & strong::reference types and where they point. This feature can be disabled
using the compiler switch –DSTRONG_LIFETIME_CHECKS_OFF. It is also disabled as part of
switching all checks off using –DSTRONG_CHECKS_OFF.

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 34

Pointer type conversion
Lifetime checks

class def_vehicle : public strong::lifetime_check{

};

class def_cars : public def_vehicle{

public:

STRONG_ENUM(car_makes_type,ford,jaguar);

};

{

strong::access<def_cars> my_car_ptr

{

def_cars my_car;

my_car_ptr = &my_car;

strong::access<def_vehicle> any_vehicle_ptr = my_car_ptr.convert<def_vehicle>();

} // my_car goes out of scope but my_car_ptr is still set Last Chance Handler called.

}

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 35

Tracked Dynamic Memory
Lifetime checks

• The strong::access type provides memory allocation and deallocation routines. Dynamic memory allocation
and deallocation raises the risk of various errors.
• Memory Leak: If strong::access is instantiated using a class that inherits from strong::lifetime_check the

allocated memory is tracked. If the last pointer to allocated memory goes out of scope or it reallocated
before the object is deallocated then the last chance handler is called.
• Note, if a dynamically allocated circular linked list were to become orphaned this would not be detected and

a memory leak will occur.
• Repeat Deallocation: If an object is inadvertently deallocated twice undefined behaviour would occur.

This is detected before it happens and the last chance handler is called.
• Deallocation of inappropriate memory: If an object that is not dynamically allocated is inadvertently

deallocated undefined behaviour would occur. This is detected before it happens and the last chance
handler is called.

• Dangling pointers: The same protection is provided for dynamic memory as described for static
memory above.

• The above protections are only maintained if the strong::access functions are used and native C++ pointer
functions are avoided. This can only be checked by review.

• const radian_type zero_rad = 0.0;

• radian_acc_t rad_ptr1 = strong::access<radian_type>::allocate(3.1); // new radian_type
on heap

• //rad_ptr1 = &zero_rad; // memory leak as nothing now points to object on heap

• rad_ptr1.deallocate(); // memory freed and pointer set to nullptr.

• //rad_ptr1.deallocate(); //trying to deallocate nullptr.

• strong::access<radian_type> rad_ptr2 = &zero_rad;

• rad_ptr2.deallocate(); //trying to deallocate stack

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Compile time check example

Reference 36

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 37

Example code
Compile time check example

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 38

Compile time error
Compile time check example

/include/strong/type.hpp: In instantiation of ‘static constexpr void strong::hidden_type<T, P_range, rep_clause, to_string_ptr>::is_compatible_type()[with
other_type = strong::hidden_type<short usigned int, value_type_def::value_type_range,0,0>; T = long long insigned int; const strong range<T>& P_Range
= result_type_def::result_type_range; const strong::hidden_enum_rep<T, P_range>* rep_clause = 0; const string (* to_string_ptr)(T) = 0]’:
/include/strong/type.hpp:843:68: required from ‘constexpr strong::hidden_type<T, P_range, rep_clause, to_string_ptr> strong::hidden_type<T, P_range,
rep_clause, to_string_ptr>::operator+(other_type&&) const [with other_type = strong::hidden_type<short usigned int,
value_type_def::value_type_range,0,0>&; T= long long insigned int; const strong range<T>& P_Range = result_type_def::result_type_range; const
strong::hidden_enum_rep<T, P_range>* rep_clause = 0; const string (* to_string_ptr)(T) = 0]’
/timing_test/Execution_time.cpp:24:23: required from here
/include/strong/type.hpp:487:44 error: static assertion failed: is compatible : incompatible base type
487 | static_assert(std::is_same_v<typename hidden_type::local_range::type,

| ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
488 | typename other_type::local_range::type>,

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

total = total +N;

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 39

Compile time error
Compile time check example

/include/strong/type.hpp: In instantiation of ‘static constexpr void strong::hidden_type<T, P_range, rep_clause, to_string_ptr>::is_compatible_type()[with
other_type = strong::hidden_type<short usigned int, value_type_def::value_type_range,0,0>; T = long long insigned int; const strong range<T>& P_Range
= result_type_def::result_type_range; const strong::hidden_enum_rep<T, P_range>* rep_clause = 0; const string (* to_string_ptr)(T) = 0]’:
/include/strong/type.hpp:843:68: required from ‘constexpr strong::hidden_type<T, P_range, rep_clause, to_string_ptr> strong::hidden_type<T, P_range,
rep_clause, to_string_ptr>::operator+(other_type&&) const [with other_type = strong::hidden_type<short usigned int,
value_type_def::value_type_range,0,0>&; T= long long insigned int; const strong range<T>& P_Range = result_type_def::result_type_range; const
strong::hidden_enum_rep<T, P_range>* rep_clause = 0; const string (* to_string_ptr)(T) = 0]’
/timing_test/Execution_time.cpp:24:23: required from here
/include/strong/type.hpp:487:44 error: static assertion failed: is compatible : incompatible base type
487 | static_assert(std::is_same_v<typename hidden_type::local_range::type,

| ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
488 | typename other_type::local_range::type>,

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

total = total +N;

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 40

Compile time error
Compile time check example

/include/strong/type.hpp: In instantiation of ‘static constexpr void strong::hidden_type<T, P_range, rep_clause, to_string_ptr>::is_compatible_type()[with
other_type = strong::hidden_type<short usigned int, value_type_def::value_type_range,0,0>; T = long long insigned int; const strong range<T>& P_Range
= result_type_def::result_type_range; const strong::hidden_enum_rep<T, P_range>* rep_clause = 0; const string (* to_string_ptr)(T) = 0]’:
/include/strong/type.hpp:843:68: required from ‘constexpr strong::hidden_type<T, P_range, rep_clause, to_string_ptr> strong::hidden_type<T, P_range,
rep_clause, to_string_ptr>::operator+(other_type&&) const [with other_type = strong::hidden_type<short usigned int,
value_type_def::value_type_range,0,0>&; T= long long insigned int; const strong range<T>& P_Range = result_type_def::result_type_range; const
strong::hidden_enum_rep<T, P_range>* rep_clause = 0; const string (* to_string_ptr)(T) = 0]’
/timing_test/Execution_time.cpp:24:23: required from here
/include/strong/type.hpp:487:44 error: static assertion failed: is compatible : incompatible base type
487 | static_assert(std::is_same_v<typename hidden_type::local_range::type,

| ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
488 | typename other_type::local_range::type>,

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

total = total +N;

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Runtime check example

Reference 41

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 42

Runtime error (no optimisation)
Runtime check example

/strong/src/error_handler.cpp:81
/apps/gnat_pro/22.2/x86_32/include/c++/10.3.1/bits/invoke.h:60
/apps/gnat_pro/22.2/x86_32/include/c++/10.3.1/bits/invoke.h:116
/apps/gnat_pro/22.2/x86_32/include/c++/10.3.1/bits/std_function.h:292
/apps/gnat_pro/22.2/x86_32/include/c++/10.3.1/bits/std_function.h:622
/strong/src/error_handler.cpp:58
/strong/include/strong/error_handler.hpp:89 (discriminator 6)
/strong/include/strong/type.hpp:858
/strong/include/strong/error_handler.hpp:73
/strong/include/strong/type.hpp:858 (discriminator 1)
/examples/timing_test/Execution_time.cpp:19 (discriminator 3)
??:?

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 43

Runtime error (-O2)
Runtime check example

/apps/gnat_pro/22.2/x86_32/include/c++/10.3.1/bits/stl_vector.h:919
/strong/src/error_handler.cpp:72
/apps/gnat_pro/22.2/x86_32/include/c++/10.3.1/bits/basic_string.h:195
??:?

• Some work to do here

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Performance

Reference 44

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 45

Execution time comparison
Performance

Vanilla C++ Strong C++
Checks On

Strong C++
Checks Off

Ada
Checks on

Ada
Checks off

No
Optimisation

46.06 1027.94 911.48 36.55 34.54

-O2 19.01 37.07 22.01 26.10 21.59

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 46

Compile time comparison
Performance

Vanilla C++ Strong C++
Checks On

Strong C++
Checks Off

Ada
Checks on

Ada
Checks off

No
Optimisation

1.61 9.03 8.42 2.04 1.75

-O2 1.85 11.71 8.56 1.55 2.07

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Call for contribution

Reference 47

This document and the information contained herein is proprietary information of MBDA and shall not be disclosed or reproduced without the prior authorization of MBDA. © MBDA 2023

Reference 48

Open source?
Library Features

• Aim to make the library freely available

• We are in the Defence industry, generally, we don’t release anything

• Need help in generating the governance model etc.

• Can we use this library to expose the wider C++ community to the benefits of these features?

• Could this encourage the take up of a language dedicated to their robust efficient
implementation.

Copyright © 2024 MBDA UK Ltd. All Rights Reserved

A stepping stone?

	Slide 1: Adding robustness to C++
	Slide 2: Table of contents
	Slide 3: Introduction
	Slide 4: Background
	Slide 5
	Slide 6: Desired Language features
	Slide 7: The Challenge
	Slide 8: Existing libraries
	Slide 9: Compiler Issues
	Slide 10: Basic Principals
	Slide 11: Range Definition
	Slide 14: Declaration in headers
	Slide 15: Other Types
	Slide 16: Subtypes
	Slide 18: Subtype hierarchy
	Slide 19: Fixed Point Subtypes
	Slide 20: Composite types
	Slide 21: Arrays
	Slide 22: Multidimensional Arrays
	Slide 23: Unconstrained Arrays
	Slide 24: Variants
	Slide 25: Representation
	Slide 26: Enums revisited
	Slide 27: Tuple
	Slide 28: Attributes
	Slide 29: Type attributes
	Slide 31: Lifetime checks
	Slide 32: Access types
	Slide 33: Lifetime checks
	Slide 34: Pointer type conversion
	Slide 35: Tracked Dynamic Memory
	Slide 36: Compile time check example
	Slide 37: Example code
	Slide 38: Compile time error
	Slide 39: Compile time error
	Slide 40: Compile time error
	Slide 41: Runtime check example
	Slide 42: Runtime error (no optimisation)
	Slide 43: Runtime error (-O2)
	Slide 44: Performance
	Slide 45: Execution time comparison
	Slide 46: Compile time comparison
	Slide 47: Call for contribution
	Slide 48: Open source?

