
Verified tail-recursive
calculation of Classic
McEliece control bits

Wrenna Robson ◈ University of Bristol
With thanks to Dr Rachel Player and Dr Martin Brain

a0

a1
a2

a3

a7

a4

a5
a6

aπ(0)

aπ(1)
aπ(2)

aπ(7)

aπ(3)

aπ(6)

aπ(4)

aπ(5)

Using control bit networks
• Permutations are represented as
 networks of control bits controlling
 exchanges between fixed elements.
• The Classic McEliece post-quantum
 key encapsulation mechanism uses
 these networks as part of its
 decryption keys.

Our contributions
• A tail-recursive variant algorithm for calculating the Classic McEliece control bits.
• A verified proof of the correctness of our tail-recursive variant in the Lean theorem
 prover and functional language, linked to a performant implementation.
• A formal proof of the correctness of the original algorithm, linked to a functional though
 non-performant implementation, building on existing formalisation work by Dan Bernstein.

Original approach
• The Classic McEliece specification uses
 only Cn,0 (which it is easier to prove the
 properties of).
• The isomorphism defined by Mn is used
 to split "M" into two permutations of
 half the size, and recursively proceeds.
• The results of the recursion must be
 interleved after they complete.

Algorithms for calculating control bits
•There is a key component of both
 algorithms which we call Cn,i.
• Computes "outer layer" for valid inputs
• This process is computationally taxing
 but this can be mitigated.

If Cn,i(π) = (F, M, L), and π
bit-invariant for all bits < i,

then the first 2i bits of F will
be 0, and M is bit-invariant

for all bits ≤ i.

If Cn,i(π) = (F, M, L), then
π = Xn,i(F) ⋅ M ⋅ Xn,i(L)

The original
algorithm loops over

decreasing n,
recursively.

Our work
generalises Cn,i,
looping over i
from 0 to n.

Our approach produces the data in
the right order for its use, and

(relatedly) the calculation is now tail-
recursive, eliminating to a simple loop.

F0...0
0 = 0

Cn,0

Cn-1,0

Mn+1

Mn

M0
n

M1
n Cn-1,0Cn,1

Mn-1

M0
n-1

M1
n-1

M0 = id

LnFn

F0
n-1

L0
n-1

F0
n-1

L0
n-1

M0...0
0 = id

M1...1
0 = id

Fn-1 Ln-1

F0 = 0...0 L0

L0...0
0

F1...1
0 = 0

L1...1
0...

...

...

...

Cn,n

An isomorphism exists between paired
permutations on 2n elements and permutations on

2n+1 elements which preserve parity.

We seek to represent all
permutations of 2n+1 elements

by a sequence of these
"conditional swaps", to avoid

side-channel leaks.

A sequence of 2n bits
represents a permutation
on 2n+1 elements. These

correspond to conditional
flips in a particular bit.

