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Using control bit networks
• Permutations are represented as 
   networks of control bits controlling 
   exchanges between fixed elements.
• The Classic McEliece post-quantum 
   key encapsulation mechanism uses 
   these networks as part of its  
   decryption keys.

Our contributions
• A tail-recursive variant algorithm for calculating the Classic McEliece control bits.
• A verified proof of the correctness of our tail-recursive variant in the Lean theorem  
   prover and functional language, linked to a performant implementation. 
• A formal proof of the correctness of the original algorithm, linked to a functional though 
  non-performant implementation, building on existing formalisation work by Dan Bernstein.

Original approach
• The Classic McEliece specification uses 
   only Cn,0 (which it is easier to prove the   
   properties of).
• The isomorphism defined by Mn is used 
   to split "M" into two permutations of 
   half the size, and recursively proceeds. 
• The results of the recursion must be 
   interleved after they complete.

Algorithms for calculating control bits
•There is a key component of both 
   algorithms which we call Cn,i. 
• Computes "outer layer" for valid inputs 
• This process is computationally taxing  
   but this can be mitigated.

If Cn,i(π) = (F, M, L), and π 
bit-invariant for all bits < i, 

then the first 2i bits of F will 
be 0, and M is bit-invariant 

for all bits ≤ i.

If Cn,i(π) = (F, M, L),  then 
π = Xn,i(F) ⋅ M ⋅ Xn,i(L) 

The original 
algorithm loops over 

decreasing n, 
recursively.

Our work 
generalises Cn,i, 
looping over i 
from 0 to n. 

Our approach produces the data in 
the right order for its use, and  

(relatedly) the calculation is now tail-
recursive, eliminating to a simple loop.
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An isomorphism exists between paired 
permutations on 2n elements and permutations on 

2n+1 elements which preserve parity.

We seek to represent all 
permutations of 2n+1 elements 

by a sequence of these 
"conditional swaps", to avoid 

side-channel leaks.

A sequence of 2n bits 
represents a permutation 
on 2n+1 elements. These 

correspond to conditional 
flips in a particular bit.


